Studying the Mechanical and Thermal Properties of Polymer Nanocomposites Reinforced with Montmorillonite Nanoparticles Using Micromechanics Method

Authors

  • F Zare Jouneghani Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
  • H Shahrani Korani Department of Mechanical Engineering, Razi University, Kermanshah, Iran
  • M.H Yas Department of Mechanical Engineering, Razi University, Kermanshah, Iran
Abstract:

In this study, the mechanical and thermal behavior of the nano-reinforced polymer composite reinforced by Montmorillonite (MMT) nanoparticles is investigated. Due to low cost of computations, the 3D representative volume elements (RVE) method is utilized using ABAQUS finite element commercial software. Low density poly ethylene (LDPE) and MMT are used as matrix and nanoparticle material, respectively. By using various geometric shapes and weight fractions of nanoparticle, the mechanical and thermal properties such as Young’s modulus, shear modulus, heat expansion coefficient and heat transfer coefficient are studied. Due to addressing the properties of interfacial zone between the matrix and nanoparticle, finite element modeling is conducted in two ways, namely, perfect bonding and cohesive zone. The results are validated by comparing with experimental results reported in literature and a reasonable agreement was observed. The prediction function for Young’s modulus is presented by employing Genetic Algorithm (GA) method. Also, Kerner and Paul approaches as theoretical models are used to calculate the Young’s modulus. It was finally concluded that the magnitude of the Young’s and shear modules increase by adding MMT nanoparticles. Furthermore, increment of MMT nanoparticles to polymer matrix nanocomposite decrease the heat expansion and heat transfer coefficients.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Thermo-mechanical properties of polymer nanocomposites reinforced with randomly distributed silica nanoparticles- Micromechanical analysis

A three-dimensional micromechanics-based analytical model is developed to study thermo-mechanical properties of polymer composites reinforced with randomly distributed silica nanoparticles. Two important factors in nanocomposites modeling using micromechanical models are nanoparticle arrangement in matrix and interphase effects. In order to study these cases, representative volume element (RVE)...

full text

Polymer/montmorillonite nanocomposites with improved thermal properties. Part II: Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes

In previous part of this work factors influencing the thermal stability of polymer nanocomposite materials were indicated, such as chemical constitution of organic modifier, filler content, nanocomposites’ structure and the processing-dependent degree of homogenization of nanofiller, were presented. In this part the basic changes in thermal behaviour of different polymeric matrixes (e.g. polyol...

full text

Mechanical properties of multi-walled carbon nanotubes reinforced polymer nanocomposites

Carbon nanotubes (CNTs ) are considered to be one of the novel reinforcement for developing advanced nanocomposites due to their outstanding thermo-mechanical properties. Multi-walled carbon nanotubes (MWCNTs ) are developed by arc discharge method. To enhance the dispersion of CNTs in polymer matrix, CNTs are modified with chemical treatment and processed by ultrasonication process. Surface ch...

full text

Effective Mechanical Properties of Nanocomposites Reinforced With Carbon Nanotubes Bundle

Nanocomposites made of Carbon Nanotube (CNT) bundles have attracted researchers’ attention due to their unusual properties such as: light weight, flexibility and stiffness.  In this paper, the effects of straight and rope-shaped bundles on nanocomposite effective mechanical properties are investigated.  First, FEA models are created consisting of CNTs with different shapes of straight and rope-...

full text

control of the optical properties of nanoparticles by laser fields

در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...

15 صفحه اول

Silk suture reinforced with Cefixime nanoparticles using polymer hydrogel (CFX@PVA); Preparation, Bacterial resistance and Mechanical properties

Objective(s): The objective of the current study was to prevent surgical site infection (SSI) by creating a new antibacterial silk suture. Methods: Cefixime trihydrate (CFX) was prepared as nanoparticles via mixing with polyvinyl alcohol (PVA) hydrogel by covalent cross-linkage. The mixture was stirred vigorously to obtain a homogenous gel. Under this conditio...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  90- 101

publication date 2020-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023